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ABSTRACT 

In this paper  I introduce a global Rankin-Selberg  integral representing 

the  symmetr ic  fourth power L-function for GL(2). I show tha t  the global 

integral is factorizable and compute  the  local unramified integrals. Finally, 

I also s tudy some other  propert ies  of the local nonarchimedean integrals. 

In troduct ion  

Let ~r be a cusp form on GL2(A) and let ~: be a unitary character of F*\A*. 

The Langlands program attaches to ~ the twisted L-function L (Tr | )~, sym 4, s) 

associated with the symmetric fourth power representation of GL2(E). This L- 

function is of degree five. My goal is to show that for generic )~ the partial 

symmetric fourth power L-function is holomorphic and to use that for studying 

estimations of Hecke eigenvalues of Maass forms in the spirit of [1], [2] and [11]. 

This paper is a first step toward this goal. Here we first introduce, in section 2, a 

global integral which we show to be Eulerian. This Rankin-Selberg type integral 

involves a double cover Eisenstein series on the group G2. It also involves a theta 

function, and hence might be viewed as a "Shimura type" integral. In the third 

section, we compute the unramified local integral obtained from the global one 

and show for nonarchimedean local fields that data  could be chosen so that those 

integrals do not vanish. The next steps, which we hope to deal with in the near 

future, include the study of the archimedean local integrals and the global study 
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of the poles of our Eisenstein series. Let us mention that this L-function was also 

studied in [11], but from a different point of view. 

The integral discussed in this paper was announced in [5]. I wish to thank 

S. Rallis for helpful conversations. 

1. N o t a t i o n s  

i.I. Let G denote the exceptional group G2. We denote its two simple roots by 

a, the short root and by/3 the long root. The positive roots of G are a,/3, a +/3, 

2a +/3, 3a +/3, 3a + 2/3. If e is a root x~(r) denotes the one parameter unipotent 

subgroup corresponding to e. The maximal split toms of G is denoted by h(tl, t2) 

and parameterized such that 

h-l(tl, t2)x~(r)h(tl, t2) = xa(~21r), 

h-l(tl, t2)x/3(r)h(tl, t2) = x/3(tllt2r). 

Let W denote the Weyl group of G. The simple reflections wa and w~ corre- 

sponding to the simple roots a and/3 satisfy the following: 

w~h(tl, t2)w~ I = h(tlt2, t~-l), 

w/3h(tl, t2)w~ 1 = h(t2, tl). 

Let P = GL2U (resp. Q = GL2V) denote the maximal parabolic subgroup of G 

such that xo(r) C_ GL2 (resp. x~(r) C_ GL2). U and V denote the corresponding 

unipotent radical subgroups of P and Q, respectively. In particular, dim U = 

dim V = 5. For more details and other group relations in G, see [4] and the 

references cited there. 

We also recall the definition of ~- in [4]. Let H3 denote the Heisenberg group 

with three letters. Let V be the normal subgroup of V generated by x3~+#(rl) 

and x3~+2~(r2). It is not hard to check that Hz -~ V/V. We define a homomor- 

phism r : V --*//3 to be the composite map of the projection from V to V/V 
with the above isomorphism. 

As usual if H is an algebraic group and k a ring containing its field of definition, 

Hh or H(k) will denote the k points of H. 

1.2. In [8] Matumoto constructed a unique double cover for the group G2 which 

we shall denote by G2 or G. Denote by (,) the two order Hilbert symbol. Let 
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h~(a) = h(a- l ,a  2) and hf~(b) 
cocycle a on G • G such that 
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= h(b,b-1). It follows from [8] that  there is a 

a(h~(a)h~(b), h~(c)h~(d)) = (a, c)(b, d)(a, d). 

We describe the restriction of a to the maximal parabolic subgroups of G. For 

gl,g2 E GL2 let a(gl,g2) denote the Kubota symbol (see [7]). Thus 

where 

(Y(glg2) v(glg2)~( detg 1 v(glg2)~ K:(gl,g2)---- \ ~ , V--~2) ) ' ~ ) '  

(a /1 _--- 
c d, c=O. 

It is not hard to check that the restriction of a to the two Levi parts is the same 

and satisfies 

(1.2.1) a(gl, g2) = g(gi, g2)(det gl, det g2) 

for all gl,g2 E GL2 (in P or Q). In particular this means that the restriction of 

to both Levi parts of P and Q yields a double cover of GL2, denoted by GL'~. 

Following [8] we choose the covering so that  a is trivial on the maximal unipotent 

subgroup of G prescribed by the choice of the positive roots given in 1.1. 

In general, if H is a reductive group, H will denote its two-fold cover. If 

L C H is a subgroup, L will denote its full inverse image in H. If there is a 

splitting homomorphism for L, we shall denote by L its image in L under this 

homomorphism. When needed we shall describe this homomorphism in detail. 

We shall also denote s : H --* H the canonical section s(h) = (h, 1) (here we 

identified H with the set of all pairs (h, ~) with h E H and ~ E {+1}). When 

there is no confusion we shall write h for s(h). 

1.3. In this section we recall some properties of the Well representation. We 

refer the reader to [4] section 1.2 and the references there for complete details. 

We identify elements h E H3 with triples (x, y, z). More precisely, let F be a 

global field and A its ring of adeles. Thus to each h E H3(A) we attach a triple 

(x, y, z), where x, y, z E A. The product is given by 

(Xl, Yl, Z1)(X2, Y2, Z2) ~- (Xl + X2, Yl -{- Y2, Zl + Z2 + X l Y 2  -- y l X 2 ) .  
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Let 13 be a nontrivial additive character of F\#`. Denote by ,5(#`) the Schwartz 

functions on A. The Weil representation we is a representation of H3(#`)SL2(#`) 

which acts on ,5(#`). We have the following formulas: 

[(0, y, z)(x, o, 0)1 = + x)13( y + z), (1.3.1) 

(1.3.2) 

(1.., 

Here r E `5(#`), and "~(t) for t E #`*, denotes the Weil constant and e E {+1}. 

We define the theta function on H3(#`)SL2(#`) by 

~EF 

for all h e H3(#`), g e SL2(#`) and r �9 ,5(#,). 

1.4. Let F and #` be as 1.3. Let r = ~ ,  r .  be an irreducible cuspidal rep- 

resentation of GL2(#`). We shall denote by w~ its central character. It is well 

known that r is a generic representation. More precisely, if we realize ~- in the 

space L~(GL2(F)\GL2(#`)), then the integral 

)] 
F\A 

is not identically zero for all ~. Here V~ denotes the realization space of r in 

L~(GL2(F)\GL2(#`)). Also g �9 GL2(A) and r is as defined in 1.3. We shall 

denote the space of all functions W~{g) by ),W{Tr, 13). Thus it is well known that 
]/V0r , r factorizes into local components. In other words we have I/V0r, r = 

~ ,  )/V0r,, r  Here )4;0r, , !b,) is the Whittaker model of ~r, corresponding to 

the character r 

We shall also need to use the theta representation of GL2(#`). We recall some 

details from [3]. Let X = ~)~ X~ be a character of F*\A*. In [3], for each such X, 

the theta representation 8• is constructed (r• is the notation of [3]). It follows 

from Proposition 8.1.1 in [3] that if ) / is  not totally even, then 8• is cuspidal. In 

other words, if X~(-1) = - 1  for at least one place then Ox is cuspidal. In any 

case it follows from .[3] Proposition 8.2 that each 8• is distinguished, i.e. it has 

a unique Whittaker model. As for r ,  we shall denote by )/Y(0x, r  the Whitaker 

model for 0• Thus we have )4;(~x, 13) -- @~(W(~ (~), 13~). 
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1.5. In this section we construct the Eisenstein series we use. Let 0• be the 

theta representation of GL2(A) as in 1.4. Let ~/(t) for t E A* denote the global 

Weil symbol. Thus 7 o det is a character of GL2(A) which, when there is no con- 

fusion, we shall denote simply as % We view det as a function of GL2(A) by com- 

posing it with the projection GL2(A) , GL2(A). We extend the representation 

0 x �9 (~/o det) of GL-~-2(A) to iS(A) by letting it act trivially on U(A). Denote by ~p 

the modulus function of P(A). We view 6p as a function of iS(A) by composing 

it with the projection 15(A) --+ P(A). Given s E C we construct 

I(X, s) = IndG- (A) Ox(~/o det) -1 | ~ ,  . 
P(A) 

Thus F~ x E I(X, s) is a smooth function F x : G(A) , Vo X (the space of 9• 

satisfying 

F~X(pg) = ~Sp(p)~/(deth)-l~x(h)F~(g ) 

for all p = hu E JS(A) where h e GL~-2(A) and u E U(A), and all g e G(A). 

To view the space as a scalar valued function, let ~ : Vo x * C be a GL2(F) 

invariant form and denote fx(g, s) -- g(FX(g)) for all g E G(A) and s E C. Here 

we used the well known fact that  there is a splitting homomorphism for G(F) in 

G(A), and the fact that  0• is automorphic. We define the Eisenstein series on 

G(A) by 

",/EP(F)\G(F) 

This series converges for Re(s) large and has a meromorphic' continuation to the 

whole complex plane. 

2. The global integral 

We keep the notations of section 1. Let ~ E V~. We view SL2 as a subgroup of 

G2 by embedding it in the Levi part of O. We denote this embedding by j .  We 

introduce our global integral, 

SL2(F)\SL2(A) V(F)\V(A) 

Here V(A) is embedded in G(A) as described in 1.2 and j(g) stands for s(j(g)) 

for g E SL2(A). The integral is well defined since O~,(r(v)g)E(vj(g), fx, s) is not 
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a genuine function of SL2(A). It also follows from the cuspidality of ~ and from 

the fact that  O~(v(v)g)F,(vj(g), fx, s) is a slowly increasing function of g that  

I(~,  r fx, s) converges absolutely for all s for which the Eisenstein series has no 

poles. 

Remark: We wish to mention that I(~o, r f• s) is "dual" to the integral (2.1) 

in [4] in the sense that  the cusp form and the Eisenstein series are interchanged. 

For every f'x(g, s) as in subsection 1.5 we introduce the function 

s) = / f (xo(r)h, (2.2) 
F\A 

for all h E G(A). Therefore fwx(h,s ) belongs to the space 

Inda- (A) (5~,(~/�9 det) -I | W(0x, r In particular, due to the uniqueness of the 
P(A) 

Whittaker model of 0 x the above induced representation is factorizable. 

Finally, we shall denote wo = w~w~w~w~ and we let N be the maximal uni- 

potent subgroup of GL2 consisting of upper triangular matrices. Then we have: 

PROPOSITION 2.1: For Re(s) large, 

I(~o, ~, fx, s ) = f f W~(glwr162 + 11 
(2.3) N(A)\SL2(A) A 4 

fW• (tUOXc~(rl)X2cz-F~(T2)X3a-i-~(T3)X3c=-1-2~(T4)g, s)r . 
Proo[: We shall carry out the process of unfolding formally. To justify the 

convergence of the integrals at each step when Re(s) is large, one can argue as 

in [6]. Thus assume Re(s) is large. Unfolding the Eisenstein series we see that  

I ( ~o, d~, f x, s) equals 

(2.4) 

[ ~o(g)Or215 s)dvdg. E 
5EP(F)\G(F)/SL2(F)V(F) (SL2(F)V(F))6\SL2(A)V (A) J 

Here (SL2V) 6 = 5-1P~f ~ SL2V. It is not hard to check that IP\G/SL2V I = 3 
and, as representatives, we may choose e, w~w~ and wo. We shall show that  the 

first two representatives contribute zero to (2.4). Assume first that 5 = e. Thus 

(SL2V) ~ -- P N SL2V D x2a+/~(r) and )7• (~x2a+f~(r)h, s) = f• s) for all r E A 

and h E G(A). Hence we obtain in (2.4) as an inner integral 

f b, ((0,0:Tlmld  
F\A 
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where (0, 0, r) = r (z2~+f~(r)) and m E H3(A)SL2(A). Using (1.3.1) this integral 

is zero. Next a s s u m e  ~f = w/sw~.  One can check that  ( S L 2 ( F ) V ( F ) )  ~ is generated 

by h ( t , t - 1 ) ,  x ~ ( r l ) , x a + ~ ( r 2 ) , x 2 ~ + ~ ( r 3 )  and x3~+2~(r4) where t e F* and ri E 

F. It is also not hard to check that  

~ X ~ ( r l ) ~  - 1  -~ X3c~+2fS(rl) and ~xa+i~(r2)~ -1 ---- X2a-i-/~(r2) �9 

Thus we get that 

L (~x~(rl)xa~-~(r2)h, 8) - -  "fx( h, 8) 

for all r l ,  r2 E A and h E G2(A). Hence we obtain in (2.4) as an inner integral 

(2.5) 
(F\A) 2 

where ( 0, r2, 0) = r(x~+a(r2)), m E Ha(A) and g E $L2(A). Using the definition 

of the theta function and (1.3.1) we get 

~EF 

F \ A  

It follows from (1.3.3) that 

and hence the above integral vanishes by cuspidality of ~0. Thus we are left with 

~f = wo. We have 

(SL2V) ~ = h( t ,  t - 1 ) x ~ ( r l ) x ~ + l s ( r 2 )  

and 

Sx~(rl)$ "1 = x s ~ + ~ ( r l )  and 6x~+~(r2)~f -1  = x~ ( r2 )  �9 

Plugging this into (2.5) and integrating over r2 first we see that  (2.5) equals 
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Thus 

(2.6) 
/ / I 

GLI(F)N(A)\SL2(A) A 4 (F\A) ~ 

[x~(m~)woxa(rl)x2~+/3(r2)x3c~+/3(r3)x3~+2a(r4)j(g), s]dmldm2dridg. 

It follows from the definition of the theta function that for any h E Ha(A)SL2 (A) 

When ~ = 0the  right hand side of (2.7)is invariant under :I m1'~ and hence, k 1 / 
by cuspidality of ~, the contribution to (2.6) for ~ = 0 is zero. Thus in (2.7) we 

may sum over ~ E F*, i.e. ~ e GLI(F). Thus the only contribution from (2.7) 

to (2.6) is from 

~EGLI(F)  

Plugging this into (2.6) and collapsing the summation with the integration we 

get 

N(A)\SL2(A) A 4 (F\A) 2 

"f• [xa(m2)wox~(rl)x2o+~(r2)xs~+a(r3)x3~+2~(r4)j(g), s]dmldm2dridg . 

It follows from (1.3.1) and (1.3.3) that 

for all h E H3(A)SLSI2(A). Using this in (2.8), (2.3) follows. | 
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It follows from Proposition 2.1 that I(~, r fx, s) is factorizable. More precisely, 

let 

~r = (~ )~r . ,  wv: = (~)w(r  ",,  r162  and I(x,s)=(~Iv(x,s) 
lY V V l /  

where u runs over all places of F. Choose ~ E V. and fx so that 

w : = |  and = ~ JW• 
t." V 

where I4:, E B;(Tr~, r  and 

Then 

](w ~) - (6~,(7 o det)-I @ W(O(~), r E Ind G(F~) 
P(F~,) 

(2.9) s(:, 0, sty, s)= 1-I sv(w., 
V 

where 

I ' (W" r  f l~ '  s) = i S W'(g)w(~)(g)r 
N ( F . ) \ S L 2 ( F . )  F~ 4 

](w ~) (wox~(rl)x2~+z(r2)x3~+:~(r3)x3~+2/3(r4)j(g), s) Cv(r2)dridg 
X 

The relation (2.9) holds provided the right hand side converges absolutely and 

provided that each local integral converges absolutely for Re(s) large. Indeed, in 

the next section we shall study these local integrals, computing the unramified 

integrals and proving other local properties we shall need. 

3. The local theory 

The subject of this section is to study the local integrals I~(Wv, r ] ~ ,  s) at 

nonarchimedean places. We shall carry out the unramified computations and 

show the existence of data so that the local integrals do not vanish. 

In this section F = Fv will denote a nonarchimdean field. We shall drop 

the reference to v from the notations when there is no confusion. Let ~r be 

an irreducible admissible generic representation of GL2(F). Let r be a non- 

trivial additive character of F. We shall denote by 1,V(Tr,r the Whittaker 
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model associated with r .  We let oJe denote the local oscillator representation 

on //3 " SL2 and we denote by S ( F )  the space of Schwartz functions on F.  

The action of we on S(F) is well known (see [9]). Let X be a character of 

F* and let 9• be the theta function as constructed in [3]. It follows from [3] 

that 0• is generic and we shall denote by FY(0• r  its Whittaker model. Let 

I(YYa• s) = Ind G (~f~,(7. det) -1 ~)  FY(~• r  Thus a function fw~ or fx in 

short, in I()4;0x, s) is a smooth function on the group G which takes values in 

W(8• r More precisely, for any h E G there is a function w~h, E )'Y(0• r  

such that  for all g E GL~2 C/5  and all u E U, 

fx(guh, s) = W~,~(g)5~(g)'y-l(det g) . 

In this section we will study the local integrals 

I(W,r215 = / / W(g)w~(g)r + l) 
N\SL2 F 4 

(W0X  (r3)x3 +2 (r4)j(g), 8)r . 

Let (,) denote the local quadratic Hilbert symbol. Let 7t denote the local 

Weil factor. Thus % %  = ( a, b)7,b for all a, b E F*. If F is nonarchimedean 

then (~, #) = 1 if ~, # are units and also % = 1. Some of the computations in 

this section will require some symbol computation. We remind the reader that  

a(gl,g2) = 1 (see 1.2) if gl or g2 are unipotent matrices of G corresponding to 

the positive roots which were chosen in section 1. Also, if gl and g2 are in the 

Levi part  of P or Q we may use, for computing a(gl,g2), formula (1.2.1). 

Finally, we will denote by (9 the ring of integers and by (9* the units in {9. 

Also, p will denote a generator of the maximal ideal in (.9 and Ipl = q-1. For 

any local field, K(H) will denote the standard maximal compact subgroup of H 

where H is a reductive group. There is a splitting homomorphism for K(G) in 

and if there is no confusion, we shall identify K(G) and its subgroups with its 

image in G. 

3.1. THE UNRAMIFIED COMPUTATION. In this section we shall carry out the 

unramified computation. We assume that q is odd. We assume that there exists 

a vector W E )4;(7r, ~) such that W(k) = W(e) = 1 for all k E K(GL~). Such a 

vector W is unique. In this case r is an additive character of F which is trivial on 

(9. In a similar way, we assume that W(0 x, r  contains a unique vector W• such 
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that Wx(k ) = Wx(e) = 1 where k E K(GL(2))  viewed as a subgroup of GL(2) 

in the usual way [7]. More precisely the splitting homomorphism is described by 

k -* (k, A(k)) where 

(3.1) 
( :  b) {(c,d(ad-bc)), 0 < l c ] < l  

A = 1, {c{ = 0,1 

for all h = d E K(GL(2)) .  Thus X is unramified. To complete the choice 

of data  we let f• E I0a20x, s) be the unramified vector in this space and r the 

Schwartz function on F which equals one on O and zero otherwise. Thus r is 

fixed under K(SL2) viewed as a subgroup in SL2. 

Next we describe the local L-function we study. By our assumption on lr we 

may assume that 7r = IndGBL~(#,,#2)where #1,#2 are unramified. Here B2 is 

the Borel subgroup of GL2 which consists of upper triangular matrices and 

From general theory we may associate to ~r a semisimple conjugacy class in 

GL2(C) which we can choose to be diag(ttl(p),tt2(p)). Let sym 4 denote the 

symmetric fourth power representation of GL2(C). It is well known that  sym 4 is 

an orthogonal representation. Denote 

A(p)=sym4(#I(p) /~2(P) ) 

= diag (#~#22(p), #1/~21 (p), 1, #i-1/~2(p), #l~/z~(p)). 

We define the local twisted symmetric fourth power L-function to be 

L0r | X, sym 4, s) = det [15 - X(p)A(p)q -~] -' 

Here /5  is the 5 • 5 identity matrix. Finally we denote by 

L(X, s) = (1 - X(p)q-S) -1 

the local Dirichlet L-function associated with X. 

In this section we prove 
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PROPOSITION 3.1: For a11 unramified data as above and for Re(s) large enough, 

L(~r | ~, sym 4, 6s - 5) 
(3.2) I(W,r215 = L(X,6S- 3)L(x2,12s- 5)L(x3,18s - ~)" 

Proo/~ We start by computing the integral I(W, r Y• s). We normalize the 

additive measure so that fo dx = 1. Using the Iwasawa decomposition for SL2 

we get 

, , )0( .  1/ 
F* F 4 

f,, s] ItV dr, d't  . 

Here we chose the measure fo" d*t = 1 and we used the K(SL2)-invariant prop- 

erty of the functions with the choice of measure fK(SL2) dk = 1. Conjugating the 

torus, in the above identity, to the left we obtain 

F* F 4 

Ix [h(1, t)wf~waw~wax~(rl)x2~+fl(r2)x3,+f~(r3)x3a+2f~(r4), s] ~)(r2)drid*t . 

We explain the above identity in more detail. First we obtain a factor of It1-1 from 

a change of variables rl --* t- lr l ,  r3 --* t-lr3 and r4 ~ tr4 which results from 

the torus conjugation. The identity h(1, t)w~w~w~wa = w~waw~wah(t,t -1) 
contributes a cocycle (t, t) which is obtained from the GL2 identity 

(01 1 0 ) ( a  b) = (b a ) ( 1  1) 

using (1.2.1). Finally, we get the contribution of [tll/2"yt from the local version 

of (1.3.2). Since 

t_ 1 = 0  f o r t t [ > l  and r  f o r l r [ > l ,  

it follows that I(w,d~,f• vanishes on the domain [rd > 1. Conjugating 

w,,x~(rl) to the right we obtain 

Itl<l Fa 

f-x [h(1, t)w~waw~xa+~(r2)x~(ra)x3a+u~(ra), s] r . 
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Write 
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l=z i n=O 
Itl<l Itl=q-" 

For tlTI = 1, the identity h(1,p"~) = h(1,p")h(1,~t) contributes a symbol (p'~,~). 

Using the identities %,",7 = (pn, r/),,b," and (p'~, p '~)  = (p'~, p'~) we obtain 

(3.3) I(W, dp,]x,s) = E W pn p-n (P",P")q]"Tp" 
n = 0  

i "fx [h(1,p")w~w~wzx~+~(r2)x~(r3)x3a+2~(r4), s] r . 
F 3 

Set 

J(n) = i L [h(1,pn)w~waw~x~+~(rl)xB(r~-)x3c~+2~(r3), s] r 
F 3 

In the following series of lemmas we will compute J(n) and the right hand side 

Jl(n):iL[h(1,pn)w.w.wflx.(r2)x3.+l.(r3),s]dri 
of (3.3). Let 

and 

F ~ 

fx [h(1,P'~)w~waw~xa+z(rl)x~(r2)xa~+2~(r3), s] r . 

Then dividing the domain of integration of J(n) into It1] _< ] and ]rl[ > 1 yields 

the expression J(n) = Jl(n) + J2(n). 

LEMMA 3.2: Jl(2n + 1) = 0. 

Proo~ Using the right invariance of fx by h(e -a,  e) with e E O* we obtain 

F2 I~I=i 

Here we chose the measure d*~ so that  fo* d*~ = 1. Conjugating h(~-l ,~)  to the 

left, we obtain 

Jl(n)=i i fx[h(l'pn)h("l)w'w'w'xo(r2)x3"+2p(r3)'s]d*~dr~" 
F 2 I~I=1 
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Before we proceed we recall the following formulas for the function W x (see [3]). 
We have 

Wx ( a a) = x ( a ) ' T a ,  a E F*; 
(3.4) 

W• p'~e 1 ) =  {X(p)~q i , 0 ,  nn-0(2)'-1(2), 

where n _> 0 and e E O*. 

Going back to Jl(n), the identity h(1,p~)h(e, 1) = h(~, 1)h(1,p ~) contributes 

the symbol (p~, e) as can be seen from the GL2 calculation. Since h(e, 1) is in 

the center of GL2 which is the Levi part of P, we can use the first formula in 

(3.4) to get 

Jl(n) = i ]'• [h(l'P'~)wf~w~w~x/~(r2)x3~+2~(r3)'s]dri i (pn,e)d*e. 
f 2 I~ l= l  

Lemma 3.2 then follows since the last integral vanishes unless n is even. 

Next we study J2(n). We start with: 

LEMMA 3.3: Let G(p) = ~ (p,e)@(p-le) and set 
Ee(OlP)* 

i ~ [h(l'P=)'~'~w~x~+~(P-')x~(r2)x3~+2~(r3)' ~] dry. R(n) 
F 2 

Then J2(2n) = -R(2n)  and J2(2n + 1) = G(p)R(2n + 1). 

Proo~ We have, 
OO 

J (nl=/Zq m 
F2 m = l  

i S•162 
I~I=1 

It follows from section I.I that 

h(e, e-1)xa+/3(p-m)h(e -1, ~) = x,+/3(p-m e) �9 

Thus, 
( 3 0  

Fl  m = l  

i Sx[h(l'p")h(e'l)w'w'wjx'+n(P-m)x'(r2)x3<~+2"(r3)'s]r 
I~I=l 
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As in Lemma 3.2 we may conjugate h(e, 1) to the left, and use (3.4) to obtain 

-[ ] J2(n) = am]• h(1,pn)w~w~w~xa+f~(p-m)x~(r2)xa~+2~(r3), s dri 
F2 m = l  

f (pn,e)~b(p-ms)de. 
[el=x 

It is not hard to check that  flel=l(pn,e)r vanishes if m > 1. Indeed 

this follows from the fact that  elements in 1 + P are squares and that  the Hilbert 

symbol is trivial on squares. For m = 1, we have 

/ (Pn, C)r de= { _ q - l ,  n -  0(2), 
q-lG(p), n = 1(2). 

IEl=l 

This proves the lemma. 

To summarize, we have shown that 

(3.5) 

I(W, dp,'fx,S ) = ~ _ W  p2n p-2n qSn(Jl(2n)- R(2n)) 
rt .-~ O 

3 I- ( p , p ) ' ) ' p e ( p )  Z W p2nq-1 p--(2n-t-1) q~(2n+DR( 2n + 1 ) .  

rt-~0 

We will show that  the right hand side of (3.5) equals the right hand side of (3.2). 

LEMMA 3.4: 

Jl(2n) - R(2n) = 

I l -  X(p)q -6s§ ) n = 0 
1-x(p)q -e'+s/~ ~n(~n--(6s4-1/2)n (] l_x(p)q-,O+5/2 ~t ~y]'t ~- - -  xn+l(p)q (-6*+s/2)(n+l) n > 1 

and 

R(2n + 1) = {o 
I --6,+312 -• (,~ ,~,,-12"+3-(6"+I/2)"v"+2(,~ {I - X'~(p)q (-68+5/2)n) 
1_X(p)q-6.+5/2 ~ ' ,  t']'i It ~,t'] 

Let us show first how this lemma implies Proposition 3.1. Indeed let 

n = 0  

n > l .  
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Using this and Lemma 3.4, equality (3.5) reads 

1 - X(p)q -6s+3/2 
I(W,r215 = ( 1 -  X(p)q -6~+3/2) -t- 

1 - X(p)q-6~+s/2 

+ Z  K p2~+, q(_6~+5/2),~_12~+5Xn+2(p)(1_X,~(p)q(_6.+5/2,n) ] 
p-(2n+l) 

n----1 

where here we used the identity 7pG(p) = q112 (see [10]). Set y = X(p)q -6"+512. 
Thus 

n----0 

+ ~ o K  p2,~+1 Yn+2(1-Y n) = p-(2n+l) �9 

Recall the Shintani [12] formula 

K (  a 

Let a = #~'1#2(p). Then 

K ( P ~  

"~ ~Ul~U;l(a) - #11#2(P)#ll#2(a ) 
a-1 ) = i - ~  

_ _  O C  - m  _ O ~ m +  1 

p-m 1 - a 

Plugging this in the above equality we get 

oo 

I(w,~,L,8) = ( 1 :  ~ ) ~ - ~ )  .=0 
OG 

n = 0  

Opening parentheses and summing the geometric series we obtain 

( 1  - y q - 1 ) ( 1  - y 2 ) ( 1  - y 3 )  
I(w,  r ]~, s) = 

(1  - a 2 y ) ( 1  - a y ) ( 1  - y ) ( 1  - a - l y ) ( 1  - a - 2 y )  ' 

and this completes the proof of Proposition 3.1. I 

To prove Lemma 3.4 we start with 
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= f f'• [h(1, p")w~x~(r), s] dr. I(n) 
F 

Then, 

I(2n) = q-(6s+l/2)nXn (p) [1 + (1 - q-1)~((p)q -8s+5/21 - Xn(P)q(--6s+5/2)n] 
T : ~  J 

and I(2n + 1) = O. 

Proof: For all r # 0 we have 

(~ (10 ;)('0 rl')(r' .)(:1 01) 
If Irl > 1 then ( - l r  -1 0 )  is in the maximal cOmpact Of GL2" We alsO Obtain a l  

cocycle contribution of (r, r) due to the above factorization in GL2. We separate 
the domain of integration in I(n) into Irl < 1 and Irl > 1. Since 

A (  -lr_ 1 0 1 ) = ( r , r  ) i f , r , > l  

we obtain 

I(n) = ~ (h(1,p~)) + / 

Id>l 

It is not hard to check that 

(3.6) 5p (h(tl, t2)) = It~t~l. 

Using this and the left invariance of Ix under x~ we get 

L [h(1,r d.- 

I(n)=,:q-3"sW• p" i)+ / 
Id>l 

or 

Id>l 

r-1 ) 7p~r-i Irl-38q -3"sdr . 
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Using the relation 7p~r-1 = 7pn3'r-1 (p'~. r -1) and 

Wx( pn r -1) =X-I(r)7"-~W• rpn 1) 

(see (3.4)) we obtain 

I ( n ) =  7-~1q • (pn 1) + 7;lq-3n" 

/ W• (p'r l)X_l(r)(p..r),r,3.+ld.r. 
Irl>l 

Notice the change to the multiplicative measure. Thus 

( + EXk(P) q(-3s+l)k / Wx 
k=l  [~[=1 

( + E Xk(p)q(-3s+l)kW• pn-lr 
k=l  

Since fl~l=l(pk,E)dr = 0 when k = 1(2), we get 

I(n)='TP"lq-3ns[w• ( p'~ 1)  

k----1 

It follows from (3.4) that 

1 =W• pn-2k 1 = 0  i f n = l ( 2 ) .  

Thus I(2n + 1) = 0. Also, 

I(2n)=q-6"~s[W• ( p2n 1)  

( + (1 - q-l) E X(P)2kq(-6~+2)kWx p2(n-k) 
k=l  

Isr. J. Math. 

1) (p'~,p-ke)de] 

1) (p~,pk) /(p~ ~)d~] 
I~1=1 

1)] 

1)] 
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if n < k then Wx (p2(n-k) ) 1 = 0 and, using (3.4), we obtain 

n 

/(2n)---q-6"S[q-~x(p)n + ( 1 -  q - l ) E  q-~-+(-6s+2)kX(p)n+k] 
k=l 

:q-(6s+l/2)nx(p)n [1-4- (1--q-1) ~ q(6S+s/2)kx(p)k] , 
k=l 

Using the formula for geometric sums Lemma 3.5 follows. I 

LEMMA 3.6: We have 

Proof 

1 X2(p)q -12s+3 
Jl(2n) = I(2n) 7 X2(p)q-12s+4 " 

By breaking up the domain of integration in rl,  we obtain 

'l(2n) : i f'x [h(1,p2n)wfTw.wfTx~7(rl)X3.+23(r2), s]dr,dr2 
F 2 

F 

-{-i i f)c[h(l'P2n)w'xj(r2)w''j(rll)h(rll'rl)'S]drl'r2 
F Ir11>l 

= / ( 2 n ) + i  f fx[h(l'p2n)w3x3(r2)h(l'rll)'s] drldr2" 
F Ir11>1 

Here we used the Iwasawa decomposition for w~x3(rl) when Ir, l > 1 (which 

corresponds to the usual decomposition in GL2; see the beginning of the proof 

of Lemma 3.5). We also conjugated xO(rl 1) to the left and used the right and 

left invariance properties of ~ .  Thus, conjugating h(1, r~ -1) to the left we get 

.,(,.):,(2n)+l S i. b<' ")'('.' 
F Ir11>l 

= s(2.)+ (S f [h(i,.'-)w.,,.(r,),.]d., ) 
F 

X ( f  Irll-6s+l'(rl)-l"/r~-'drl) " 

irl I>i 
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This follows from the fact that h(r~ l, 1) is in the center of the GL2 which is the 

Levi part of P (see the proof of Lemma 3.2). Hence 

Jl(2n)=l(2n)(1-1- i 
I r l l> l  

= I(2n)(l § ~-~q(-6s+2)kX(P)k'l" S (Pk'~)de) " 
k-----1 ]e]=l 

Thus we may sum over k = 0(2). We get 

31(2n) = I(2n) [1 + ( 1 -  q - l ) E  q(-12s+a)kx(p)2k] 
k = l  

and the lemma follows. | 

To complete the proof of Lemma 3.4 we need to compute R(m). Write R(m) = 
Rl(m) + R2(m) where 

and 

F I r l l > l  

We start with Rt(m): 

F 

F 

F 

In the first equality we used the corresponding Iwasawa decomposition for the 

matrix w~x~(p -1) (as in Lemma 3.5). The second equality follows from the 

relation 
x (r2)x (p) = 



Vol. 92, 1995 L-FUNCTION OF GL2 177 

where u is a unipotent matrix such that  

f• s] =fx[h(l,P'~)w.h,s] 
for all h E G~. We also used the relation wjx.+~(pr2)w~ = z.(pr2).  Conjugating 

h(p-I,p 2) to the left, we get 

R,(m) = [ fx [h(P 2, 1)h(1,Pm-1)w~x~(par2), s] r (p"+lr,) (pm,p)dr2 
F 

=q-12s+3X(p2) f Zx[h(l,pm-l)w.x.(r2),s]@(pm-2r2)(p'~,p)dr2. 
F 

In the last equality we changed variables in r2 and used the fact that h(p 2, 1) is 

in the center of the Levi part of P (as in Lemmas 3.2 and 3.5). Hence 

Rl(m)=x2(p)q-12"+3(pm'P)[Yx(h(i'Pm-1)) f r dr2 

(3.7) 

Ir21~l 

+ f Y• ~p(pm-2rgjdr2] 
Ir21>1 

:~2(p)q-3sm-9s-t-3(pm,p)[Wx(Pm-1 1)"[p-lx f ~ (Pra--2r2) dT2 

J" S WX "21 ) ,r 2 ~/pm_irj_tW (pm-2T2)dr,] I pm-1 -3s -1 -- 
Ir~l>l 

+ f Wx( pm-lr2 1)x(r2)-l(pm-l,r2)r2 -3"-" 21 2j 

i.21>1 

:~'(')q '-~'+'('~,')~;', [~. (" ,) I+ ('~ "')" 
I~I<I 

+ k=l ~ X(P)k(pm-l'pk)q(-3s+l)kwx (pro-k-1 1) 

x f (pk,~)r162 
M=I 

Now we have: 
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L E M M A  3 . 7 :  

0, 0, 
R l ( 2 n )  = q(_12s+2)n_6s+3/2X(p)2n+l ' r t =  n > l .  

Proof: Plug  m = 2n in (3.7) to  ob t a in  

R~(2n) = x2(p)q-6Sn-9s+37;l[w• ( p2n-1 1 ) f  r 

Ir21<l 

+ ZX(p)k (p ,  pk)q(_3s+l)kW• p2n -k+ l  1 

k = l  

I~1=1 

The  first t e r m  in the  bracke ts  vanishes for all  n, since 2n - 1 is odd.  The  second 

t e r m  vanishes for n = 0. Thus  RI (0 )  = 0. Also, f lel=l  -= 0 if k = 0(2). Thus  for 

k - 1 ( 2 ) ,  

[el=l I~1=1 

which is zero unless 2n - k - 2 = 1 or k = 2n - 1. Hence, for n > 1, 

2 6sn 9s+3 1 2n 1 ( 3 s + l ) ( 2 n  1) 1 
R l ( 2 n )  = X (P)q- - 7;  X(P) - q -  - (p,p)q- G(p) . 

I t  follows f rom [10] t h a t  7pG(p) = ql/2, and  hence for n _> 1 t h a t  

R l ( 2 n )  = q(-12s+2)n-6s+3/2X(p)2n+l.  | 

LEMMA 3.8: 

Rl(2n + 1) = 

{ l_x(p)q-eS+5/2 (P, p)x(p)n+2q-(fs+l/2)n-12s+3(1 - xn(p)q(-fs+5/2)n), 

Proof" In  (3.7) let  m = 2n + 1. We get  

Ir21_<l 

+ ~X(p)kq(_3s+l)kw • (p2n-k 

k=l 

n > l .  

r 2 

Ir 
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Each term vanishes for n = 0, hence RI(1) = 0. Also 

= 0  f o r 2 n < k o r k - l ( 2 ) .  

Thus, using (3.4), we get for n > 1 

R1 (2n + 1) 
n 

= X2 (p)ql2S-6sn+3(p, p) [q- ~ X(p)= + E X(P)2kq(-6"+2)k- ~ X(p)n-k 
k=l  

i + (p2n-2k--l~) dz] 
I~I=I 

n--I 

= q-12"-<6"+ll2)'~+aX(p)n+2(p,p)[1 + (1 - q-i) E X(P)k" q(-6s+Sl2)k 
k=l  

_ X(p)nq(-6s+512)n-1], 
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ration of R1 (m) 

R2(m) = i 
F 

i L[h(l'pm)wf~waxa(p-1)x3~+~(r2)h(rll'rl)'S] 
I r l l> l  

r (pm-2rll) drldr2 
= f f "fx[ h(l'pm)h(rll'l)w[3x#(r2rll)w~xa(p-lrll)'s] 

F Irll>l 

r 2. 

where in the last equality we need the identity 

/ { r  1 - q  i > 0 ,  
- q -  , i = - 1  . 

I~1=1 

Using the formula for geometric sums, the lemma follows. | 

We proceed with R2(m). We have 

R~(m) = 

i i f• 
F [rx]>l 

Using the relation 

xa(p-1)Xf~(rl 1) ---- xf~(rll)xa(p-1)X2c~+~ ( p - 2 r l l )  U, 

where u is a unipotent matrix in P,  we obtain in a similar way as in the compu- 
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Since jrlJ > 1, xa(p-lrl 1) is in the maximal compact of G. Using this and the 

fact that h(r'~ 1, 1) is in the center of the Levi part of P,  we obtain 

R2(m)= f 
F 

• f JrlJ-6"+lx(rl)-t%?,~b (pm-2r~-]) dr1 
h l > l  

oo 

(3.8) = I (m)  E q(-6s+2)kX(P)k'~P k f (ph, c)r . 
k = l  lel=l 

The last lemma is: 

LEMMA 3.9: 

R2(2n + 1) = 0; 

(1-q-')• ], n I(O)[q-6~+3/ZX(p) + = O, 
R2(2n) = 1-x2(p)q-12s+4 

!'{9~'~ (1--q-I)X2(P) q12s+4 
, k~ ,~ /  l_xZ(p)q_12,+ 4 , n > 1. 

Proof'. From Lemma 3.5, I(2n + 1) = 0. Hence by (3.8), R2(2n + 1) = 0. Put  

m = 2n in (3.8): 

oo 

R2(2n) = I(2n) Z q(-6"+2)kX(P)kTP k f (pk,e)r 
k = l  isl= 1 

The integration on e vanishes if 2n + k - 2 < -1 .  If n = 0, 

R2(0) = I(O)[q(-6s+2)X(p)'Tp f (p,e)r 
[et=l 

+ ~q(-6s+2)kX(P)k?P k f (Pk'e)de]" 

k=2 l~l--I 

The terms corresponding to k = 1(2) vanish. Using the relation 7pG(p) = ql/2 
we get 

oo 

k----1 

In a similar way we compute R2(2n) for n _> 1. II 

This completes the proof of Lemma 3.4 and the unramified computation. 
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3 . 2 .  C O N V E R G E N C E  AND NONVANISHING. We start with 

LEMMA 3.10: Let W E 14;(~,r f< E I04;o~,s) and r E S(F). Then the 

integral I(W, r fx, s) converges absolutely for Re(s) large. 

Proof" Writing the Iwasawa decomposition in SL2 and using the K(G) finiteness 

of fx and the K(SL2) finiteness of W and r we see as in the first steps of the 

proof of Proposition 3.1 that it is enough to prove the absolute convergence of 

(3.9) v. v, 

• [h(1, t)woxo(rl)x2~+~(r2)x3o+/3(r3)x3~+2~3(r4), s] drid*t. 

Since W is fixed by some small compact open subgroup of SL2, we see that 

t_ x = 0 if Itl is large. 

Since r E S(F), r + t) = 0 if 17"1 + t I is large. Thus we may deduce that (3.9) 

is zero if lr:[ is large. Using the K(G) finiteness of f~ it is enough to study the 

absolute convergence of 

F* F 3 

• [h(1, t)wox2~+~(r2)x3<,+z(r3)x3~+2~(r4), s] drid*t. 

Conjugating wo to the right implies that we may study the absolute convergence 

of 

(3.10) F* F a 

x [h(1, t)x_(a+#)(r2)x_(3,+2~)(r3)x-/~(r4), s] drid*t. 

Next we write the Iwasawa decomposition of x_ (a+~) (r2)x_ (3~ +2a) (r3)x-a (r4). 

We do this by breaking the domain of integration into eight separate cases either 

Iril < ci or Iri] > cl for some constants ci with i = 2,3,4. By K(G)-finiteness of 

f• we may ignore the integration on those variables rl with Iril < ci. Let us treat 

the case where all Iril > cl. In this case, the contribution to (3.10), provided ci 
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is large enough, is 

F* Ird>c~ 
(3.11) 

( r21r31t ),r~r~r3i-,drid.t .  
x W x r41r22r31 

The absolute convergence of this integral for Re(s) large follows from the usual 

estimation of Whittaker functions (see [6]). | 

Since I(W,r215 is a finite sum of integrals of the type of (3.11), it 

also follows from the asymptotic expansion of the Whittaker functions that 

I(W, r215 s) is a rational function in q-8. Thus we have: 

LEMMA 3.3: I(W, r ix, s) is a rational function in q-8. In particular, it admits 
a meromorphic continuation to the whole complex plane. 

Finally, we prove 

PROPOSITION 3.4: There exists a choice of data such that given so E C, the 
integral I ( W, r ix, s) is nonzero at s = so. 

Proof'. We argue in a similar way as in [13] section 6. Choose W E W(Ir, r  and 

W• E YV(O• r such that W(e)W• ~ O. For Re(s) large, we have 

i i  (( ,-,)(.. 7))[(' 1 9- F * F '  W t 1 wr t _ l ) ( r  5 1)]+(r, 1) 

r  . 

Conjugating h(t , f  -1) to the left in ix, we obtain 

(3.12) 

F* F5 1) m'(r1501)+(rl+t)ix 
(h(1, t)wox,~(ri)x2,+j(r2)x3a+j(r3)x3~+2~(ra)x-j(rs)wo l, s) 

~P(r2)(t, t)~titi-5/2 drid*t . 
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To obtain the above, we also used a suitable change of variables. Given W E 

)42(~r, r  and r E S ( F )  there is a compact open subgroup K ~ of SL2 such that  

W(gk ~ = W(g) for g e SL2 and w~(k~162 = r for all k ~ �9 g ~ Also for Irll 

small enough, wr 0, 0))r = r Let K 1 be a sufficiently small compact  open 

subgroup of G such that x~+~(rl), X~(rh) E Kl whenever ( 1 )  K ~ r5 1 �9 and 

wr 0, 0))r = r Thus K 1 depends on the choice of W and r Let Ul = 

z~(rl)x2~+~(r2)x3~+~(r3)x3,+2~(r4)x-~(r~). We claim that  if WoulWo I �9 PK 1 
then woUlWo 1 �9 K 1. To see this we use matr ix  multiplication. Realize G2 as a 

subgroup of S07. One can choose the embedding so that  P will be contained in 

the maximal parabolic subgroup of SO7 whose Levi part  is GL2 x SO3. In this 

embedding one has 

woulwo 1 = X h 
Z X* I2 

where X, Z and X* are so that  the above matrix is in G2. Also for p �9 P we 

have 

p = B �9 where A �9 GL2 and B �9 SOa, 
A* 

in such a way that  p is in G2. Thus a simple matr ix  multiplication of (wouw~l)p 
shows that  woulwolp �9 K 1 implies that  woulwo 1 �9 K 1. Choose f• which is 

supported on PK 1. Write also 

(1) [ (1 ) ]  
we r5 1 r 1 6 2  ( r l ,0 ,0)  rs 1 r 

Thus (3.12) equals, up to a nonzero constant, 

w ( t  t t -1 )  r ( l ) 't'3s+a(t,t)dt 
F* 

where a E Z. Choose r to be supported on the set 1 + P r o .  Then if m is 

large enough, the above integral is a nonzero constant times W(e)W• This 

completes the proof. | 
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